Surname	Centre Number	Candidate Number
Other Names		

GCSE

CHEMISTRY

UNIT 2: CHEMICAL BONDING, APPLICATION OF CHEMICAL REACTIONS AND ORGANIC CHEMISTRY HIGHER TIER

SAMPLE ASSESSMENT MATERIALS

(1 hour 45 minutes)

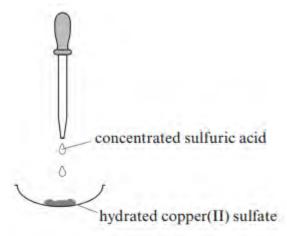
For Examiner's use only							
Question	Maximum Mark	Mark Awarded					
1.	10						
2.	10						
3.	7						
4.	12						
5.	11						
6.	8						
7.	8						
8.	6						
9.	8						
Total	80						

ADDITIONAL MATERIALS

In addition to this paper you will require a calculator.

INSTRUCTIONS TO CANDIDATES

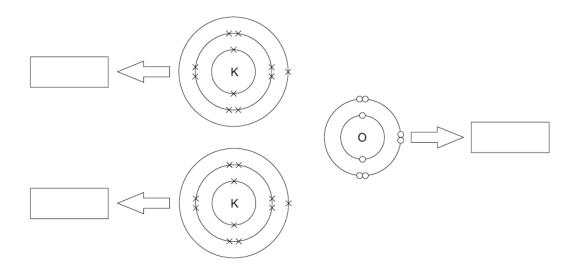
Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid. Write your name, centre number and candidate number in the spaces at the top of this page. Answer all questions.

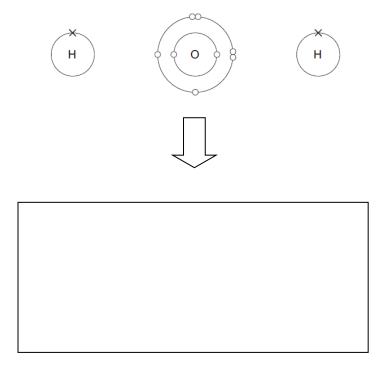

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. Question **8** is a quality of extended response (QER) question where your writing skills will be assessed.

	betwe	en sulfur Write th								ents t	his rea	ction [3
				+		-			-			
	(ii)	The gra									fur trio	xide
	10	0										
	8	0-										
Percentage yield of sulfu trioxide	6 Ir	0										
	4	0-										
	2	0-										
	- 19	300	400		500		600	Ш	700	##	800	
		500	400			perat	ure (°(C)	,,,,		000	
		Use the tempera								ield if	the	[2
					incre	ase ir	ı perce	entage	yield	=		9
	(iii)	One mo										uric
		Write a						41-1	4:	•		[2


(b) A few drops of concentrated sulfuric acid were added to some crystals of hydrated copper(II) sulfate, $CuSO_4.5H_2O$


Describe two changes that would be seen in the appearance of the co sulfate and state the property that the concentrated sulfuric acid displa					

10

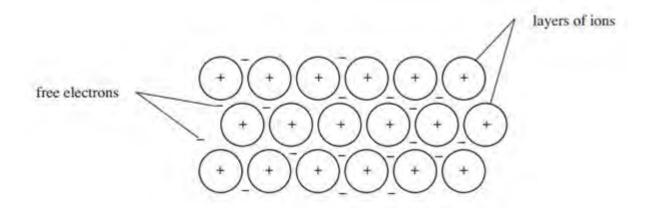
2. (a) Potassium reacts with oxygen to form potassium oxide. The diagram below can be used to show the electronic changes that take place as potassium oxide is formed.

- (i) **Draw arrows on the diagram** to show the movement of electrons that leads to the formation of ions. [1]
- (ii) **Write in the boxes**, the electronic configurations of the potassium and oxide **ions** formed. Include the charges on these ions. [2]
- (b) Using the electronic structures shown, complete the diagram to show the covalent bonding in a molecule of water, H₂O. [2]

(c) **Table 1** shows some properties associated with three different types of structure.

Structure	Particle model	Melting point and boiling point	Electrical conductivity
giant ionic	consists of charged ions	high	only when molten or in solution
giant covalent	single molecules consisting of very many atoms	high	poor
simple covalent	small molecules, each consisting of a few atoms	low	poor

Table 1


Table 2 lists some properties of four substances, A, B, C and D.

Substance	Melting point (°C)	Boiling point (°C)	Electrical conductivity
A	-182	-161	poor
В	3550	4827	poor
С	1085	2562	good
D	801	1413	good when dissolved

Table 2

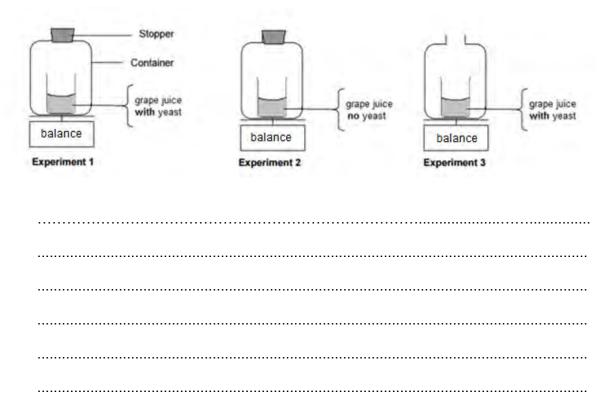
Give the letter of the substance, A , B , C or D that does not have a structulisted in Table 1 . Give the reason for your answer.	re [2]
Substance	
Reason	

(d) The diagram shows a model that can be used to represent the structure of a metal.

Use this model to explain three properties that are typical of metals.							

10

3. The following passage gives some information about how wine makers convert grapes into wine:

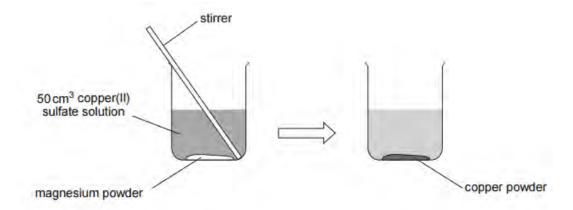


"Grapes contain sugar. When picked at the right time, the grapes are crushed and the juices are collected. They are covered with a layer of yeast solution and a chemical reaction takes place. During the reaction, the yeast transforms the sugars from the grapes into carbon dioxide and alcohol. This way of making alcohol has been used for thousands of years and is known as fermentation."

(a)	During the fermentation reaction, frothy bubbles form. Why does this Tick (\checkmark) the correct answer.					
	bubbles form because alcohol is produced and turns in	to a gas				
	bubbles form because of the yeast reproducing					
	bubbles form because a gas, carbon dioxide, is produce	ed				
	bubbles form because the grape juice turns into a vapo	ur				
(b)	During the reaction, the yeast transforms the sugar in the dioxide and alcohol.	ne grapes	into carl	bon		
	Where do the carbon atoms that are present in the carb alcohol come from? Complete the following table.	on dioxide	e and	[3]		
	Suggested explanation of where the carbon atoms come from	Is this co				
	some carbon atoms come from the sugars					
	some carbon atoms come from the yeast					
	some carbon atoms come from the solution					

(c) During the fermentation process, carbon dioxide gas is produced.

Three separate fermentation experiments were set up as shown below and left for 1 hour. State and explain what you would expect to happen to the mass of each experiment after one hour. [3]


4. (a) On Anglesey, there is a large copper mine called Parys Mountain. Unwanted rock from the mining process has been dumped forming waste tips. As rainwater passes through the waste tips it dissolves copper salts. One of the salts is copper(II) sulfate.

During the 18th century, large shallow pits were dug all over the mountain. These filled with rainwater. Scrap iron was placed into the water and after a few months the pits were drained and copper-rich sludge was collected.

	formed.	e products
(b)	A similar reaction takes place between copper and silver nitrate. products formed is copper(II) nitrate, $Cu(NO_3)_2$.	One of t

(c) Three students individually investigated the mass of copper formed when increasing amounts of magnesium powder were added to 50 cm³ of copper(II) sulfate solution.

- Each pupil added 0.1 g of magnesium to 50 cm³ of copper(II) sulfate solution and stirred the mixture until no more magnesium remained.
- They filtered, dried and weighed the copper formed.
- They repeated the experiment using 0.15, 0.20 and 0.25 g of magnesium powder and a new 50 cm³ of copper(II) sulfate solution each time.

The results they obtained, as well as the theoretical results are shown in the following table.

Mass of	Mass of copper formed (g)					
magnesium added (g)	Student 1	Student 2	Student 3	Mean result	Theoretical result	
0.10	0.15	0.13	0.14	0.14	0.26	
0.15	0.25	0.21	0.23	0.23	0.40	
0.20	0.35	0.37	0.28	0.36	0.54	
0.25	0.41	0.45	0.39	0.40	0.68	

(i)	Circle the anomalous results not used in calculating the mean masses of copper.	[1]
(ii)	Using the information in the table, describe the relationship betwee the mass of magnesium added and the mass of copper formed.	n [1]

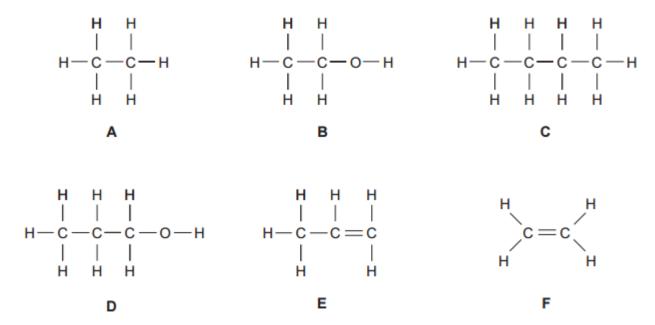
(iii)	Using the information in the table, state whether the evidence supporting your conclusion in part (ii) is strong or weak. Give a reason for your answer.	[1]
(iv)	The mean values calculated are lower than the theoretical values. Suggest two possible reasons for this difference.	 [2]
	ouggest two possible reasons for this unicrence.	
(v)	Use the results to predict the theoretical mass of copper that would be deposited when a mass of 0.35 g of magnesium is added. Give reason for your answer.	
	Theoretical mass deposited =g	
	Reason	

12

5.	(a)	Crude	e oil is a mixture of hydrocarbons.	
		(i)	Describe briefly how crude oil was formed.	[2]
		(ii)	Explain how crude oil is separated into different fractions.	[4]

(b) Some countries use ethanol as a fuel for their cars instead of petrol. The following diagram shows the chemical changes that occur as ethanol burns.

Remember that CO₂ contains double bonds **only**


The bond energies relating to the bonds in the above diagram are shown in the table.

Bond	Bond energy (kJ)
O = O	496
С—Н	413
С—С	347
C—O	358
О—Н	464
C = O	743

Use this information to show that the reaction is exothermic and that the overall energy change is –1034 kJ.

[5]

6. The following diagram shows the structures of six organic compounds.

(a) Complete the table below by giving the name of the family to which each pair of compounds belongs and the general molecular formula for that family. [2]

Pair of compounds	Family to which the pair of compounds belong	General molecular formula for the family
A and C		
B and D		

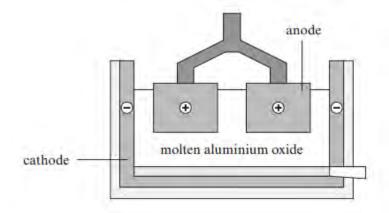
(b)	Describe a chemical test that could be carried out to distinguish between compounds C and E compounds.	[2]

(Compound C is one o	f two isomers that have the molecular formula C_4H_{10}	
	i) Give the mear	ning of the term <i>isomer.</i>	[1]
(ii) Draw the struc	sture of the other isomer of C_4H_{10} .	
i	somer. Draw the stru	nds A-F , one compound other than C that has an acture of its isomer and give its systematic name.	[2]
	CompoundStructure		
1	Name		

7. (a) A student carries out a series of chemical tests on three unknown solutions, **A**, **B** and **C**. Her results are recorded in the table below.

Use all the information to identify reagents **X** and **Y** and solutions **A** and **B**. [4]

	Add dilute HCI	Add BaCl₂(aq)	Add reagent X	Add reagent Y
Α	no reaction	white precipitate forms	pale green precipitate forms	no reaction
В	fizzes	no reaction	pungent smell given off	white precipitate forms
С	no reaction	no reaction	no reaction	yellow precipitate forms


Reagent X		
Reagent Y		
Solution A		
Solution B		
	nnced symbol equation for the reaction that takes place betwe onate and dilute nitric acid.	en [2]
Na ₂ CO ₃ +	HNO₃ → + +	
-	below represents the reaction occurring between copper(II) tion and sodium hydroxide solution.	
CuC	Cl_2 + 2NaOH \rightarrow Cu(OH) ₂ + 2NaCl	
Write the ion	ic equation for this reaction. Include state symbols.	[2]

..... + →

(b)

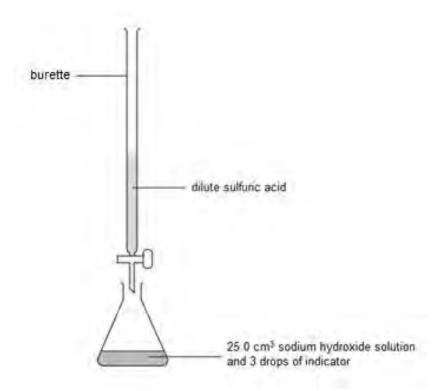
(c)

8. The diagram below shows an electrolysis cell used in the extraction of aluminium from aluminium oxide.

	•	•	s, including releva	-	

9. (a) Richard prepared a solution of sodium hydroxide, NaOH, by dissolving 2.40 g of sodium hydroxide pellets in 250 cm³ of water.

Calculate the concentration of the sodium hydroxide solution in mol/dm³. [2]


$$M_{\rm r}({\rm NaOH}) = 40$$

(b) Sulfuric acid reacts with sodium hydroxide according to the following equation.

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

Richard used his sodium hydroxide solution to determine the concentration of a sample of dilute sulfuric acid.

He measured exactly 25.0 cm³ of the sodium hydroxide solution and titrated it against the sulfuric acid using the following apparatus.

(i) 	Explain why a burette is used to add	I the sulfu	uric acid.		[2]
 (ii)	The results of the titration are showr	n in the fo	ollowing to	able.	
	Titration	1	2	3	4
	Volume of sulfuric acid used (cm³)	17.3	15.9	16.1	16.0
	dilute sulfuric acid in mol/dm ³ .				[4]
	concentration	n =		1	mol/dm³

END OF PAPER

FORMULAE FOR SOME COMMON IONS

POSITIVI	EIONS	NEGATIV	VE IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br⁻
Ammonium	NH_4^+	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI ⁻
Calcium	Ca ²⁺	Fluoride	F ⁻
Copper(II)	Cu ²⁺	Hydroxide	OH-
Hydrogen	H⁺	lodide	I ⁻
Iron(II)	Fe ²⁺	Nitrate	NO ₃
Iron(III)	Fe ³⁺	Oxide	O ²⁻
Lithium	Li⁺	Sulfate	SO ₄ ²⁻
Magnesium	Mg ²⁺		
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag [⁺]		
Sodium	Na [†]		
Zinc	Zn ²⁺		

Avogadro's number, $L = 6 \times 10^{23}$

Atomic number

Mass number

	_	Φ	E	e	uc	7	no	>	ton	ě	u	Z-	o		
	0	⁴ He	Helium	20 Ne	Neon	40 Ar	Argon	84 Kr	Krypton	131 Xe	Xenon	²²² ₈₆ Rn	Radon		
	7			19 P	Fluorine	35 CI	Chlorine	80 Br	Bromine	127 53	lodine	²¹⁰ At	Astatine		
	9			0 8	Oxygen	32 S	Sulfur	79.Se	Selenium	128 Te	Tellurium	²¹⁰ Po	Polonium		
	2			14 N	Nitrogen	31 P	Phosphorus	75 AS	Arsenic	122 Sb	Antimony	209 B i	Bismuth		
	4			12 C	Carbon	28 Si	Silicon	73 Ge	Germanium	119 Sn 50 Sn	Tin	²⁰⁷ Pb	Lead		
Z	က			5 B	Boron	27 AI	Aluminium	⁷⁰ Ga	Gallium	115 In	Indium	204 TI	Thallium		
MEN.								65 Zn	Zinc	112 Cd	Cadmium	201 Hg	Mercury		
								64 29 Cu	Copper	108 Ag	Silver	197 79	Gold		
: 0F								59 Ni	Nickel	106 Pd 46 Pd	Palladium	195 Pt	Platinum		
ABLE		Ť.	Hydrogen					⁵⁹ Co	Cobalt	103 Rh	Rhodium	192 lr	Iridium		
IC T	dn			ı				56 Fe	Iron	101 Ru 44 Ru	Ruthenium	190 OS	Osmium		
	$\overline{}$									<u>_</u>	$\overline{\mathbf{c}}$	_	0		
20	Group							55 Mn	Manganese	99 Tc	Technetium Ri	¹⁸⁶ Re ¹	Rhenium 0		
PERIODIC TABLE OF ELEMENTS	Gre														Key:
PERIO	Gre							55 Mn	Manganese	99 TC	Niobium Molybdenum Technetium	¹⁸⁶ Re	Rhenium		Key:
PERIO	Gre							52 Cr 55 Mn	Chromium Manganese	⁹⁶ ₄₂ Mo ⁹⁹ ₄₃ Tc	Molybdenum Technetium	184W 186 Re	Tungsten Rhenium		Key:
PERIO	Gre							51V 52 Cr 55 Mn	Vanadium Chromium Manganese	93 Nb 96 Mo 99 Tc	Yttrium Zirconium Niobium Molybdenum Technetium	¹⁸¹ Ta ¹⁸⁴ W ¹⁸⁶ Re	Tantalum Tungsten Rhenium	²²⁷ Ac 89	Actinium
PERIO	2 Gre			⁹ Be	Beryllium	²⁴ Mg	Magnesium	⁴⁸ Ti ⁵¹ V ⁵² Cr ⁵⁵ Mn	Titanium Vanadium Chromium Manganese	91Zr 93 Nb 96 Mo 99 Tc	Zirconium Niobium Molybdenum Technetium	¹⁷⁹ Hf ¹⁸¹ Ta ¹⁸⁴ W ¹⁸⁶ Re	Hafnium Tantalum Tungsten Rhenium	²²⁶ Ra ²²⁷ Ac ⁸⁹ Ac	
PERIO				⁷ Li ⁹ Be	Lithium Beryllium	²³ Na ²⁴ Mg	Sodium Magnesium	45 Sc 48 Ti 51 V 52 Cr 55 Mn	Scandium Titanium Vanadium Chromium Manganese	89 Y 91 Zr 93 Nb 96 Mo 99 Tc	Yttrium Zirconium Niobium Molybdenum Technetium	¹³⁹ La ¹⁷⁹ Hf ¹⁸¹ Ta ¹⁸⁴ W ¹⁸⁶ Re	Lanthanum Hafnium Tantalum Tungsten Rhenium		Actinium

© WJEC CBAC Ltd.

חו	1
rı	VI.